Chlorella Works.

Published research on the effectiveness of chlorella in binding toxic chemicals, metals, moulds (mycotoxins) and radioactive elements.

Chlorella’s ability to bind toxic chemicals.

Dioxins

Nakano, S., Takekoshi, H., Nakano, M. 2007. Chlorella (Chlorella pyrenoidosa) supplementation decreases dioxin and increases immunoglobulin A concentrations in breast milk. J Med Food; 10(1): 134-42. PMID 17472477.http://www.ncbi.nlm.nih.gov/pubmed/17472477

Nakano, W., Noguchi, T., Takekoshi, H., Suzuki, G., Nakano, M. 2005. Maternal-fetal distribution and transfer of dioxins in pregnant women in Japan, and attempts to reduce maternal transfer with chlorella(Chlorella pyrenidosa) supplements. Chemosphere; 61(9):1244-55. PMID15985279. http://www.ncbi.nlm.nih.gov/pubmed/15985279

 

Bisphenol A.

Hirooka, T., Nagase, H., Uchida, K., Hiroshige, Y., Ehara, Y., Nishihara, T., Miyamoto, K., Hirata, Z. 2005. Biodegredation of bisphenol A and disappearance of its estrogenic activity by the green algae Chlorella fusca var. vacuolata. Environ Toxicol Chem; 24(8): 1896-901. PMID 16152959.  http://www.ncbi.nlm.nih.gov/pubmed/16152959

 

Zhang, W., Xiong, B., Sun, W.F., An, S., Lin, K.F., Guo, M.J., Cui, X.H. 2014. Acute and chronic toxic effects of bisphenol A on Chlorella pyrenoidosa and Scenedesmus obliquus. Environ Toxicol; 29 (6): 714-22. PMID 22887798.  http://www.ncbi.nlm.nih.gov/pubmed/22887798

 

Heterocyclic amines

Lee, I., Tran, M., Evans-Nguyen, T., Stickle, D., Kim, S., Han, J., Park, J.Y., Yang, M. 2015.   Detoxification of chlorella supplement on heterocyclic amines in Korean young adults. Environ Toxicol Pharmacol; 39(1): 441-6. PMID 25590673  http://www.ncbi.nlm.nih.gov/pubmed/25590673

Lee, Y.J., Hong, H.J., Kim, J.Y., Lee, K.W., Kwon, O. 2013. Dietry Chlorella protects against heterocyclic amine-induced aberrant gene expression in the rat colon by increasing fecal excretion of unmetabolised PhIP. Food Chem Toxicol; 56: 272-7.  http://www.ncbi.nlm.nih.gov/pubmed/23466459

 

Advanced glycation end products (AGE) (metabolic toxins)

Yamagishi, S., Nakamura, K., Inoue, H. 2005. Therapeutic potentials of unicellular green alga Chlorella in advanced glycation end product (AGE)-related disorders. Med Hypotheses; 65(5):953-5.http://www.ncbi.nlm.nih.gov/pubmed/15996828

 

 

The ability of Chlorella to bind toxic metals.

Caesium

Avery, S.V., Codd, G.A., Gadd, G.M. 1991. Replacement of cellular potassium by caesium in Chlorella emersonii: differential sensitivity of photoautotrophic and chemoheterotrophic growth. Journal of general microbiology; 138, 69-76.

 

Platinum, Rhodium, Lead

Shams, L., Turner, A., Millward, G.E., Brown, M.T. 2014. Extra- and intra-cellular accumulation of platinum group elements by the marine microalga, Chlorella stigmatophora. Water Res, 1; 50: 432-40.  http://www.ncbi.nlm.nih.gov/pubmed/24268058

 

Copper, Chromium, Lead, Cadmium.

Kumar, R.M., Frankilin, J., Raj, S.P. 2013. Accumulation of heavy metals (Cu,Cr,Pb and Cd) in freshwater micro algae (Chlorella sp.) J Environ Sci Eng; 55(3): 371-6http://www.ncbi.nlm.nih.gov/pubmed/25509955

 

Cadmium

Shim, J.Y., Shin, S.H., Han, J.G., Park, H.S., Lim, B.L., Chung, K.W., Om, A.S. 2008. Protective effects of Chlorella vulgaris on liver toxicity in cadmium administered rats.   J Med Food; 11(3): 479-85.  http://www.ncbi.nlm.nih.gov/pubmed/18800895

 

Mercury

Uchikawa, T., Maruyama, I., Kumamoto, S., Ando, Y., Yasutake, A. 2011. Chlorella supresses methylmercury transfer to the fetus in pregnant mice. J Toxicol Sci; 36(5): 675-680.  http://www.ncbi.nlm.nih.gov/pubmed/22008543

Uchikawa T, Yasutake A, Kumamoto Y, Maruyama I, Kumamoto S, Ando Y. 2010.   The influence of Parachlorella beyerinckii CK-5 on the absorption and excretion of methylmercury (MeHg) in mice.

Uchikawa T, Kumamoto Y, Maruyama I, Kumamoto S, Ando Y, Yasutake A. The enhanced elimination of tissue methylmercury in Parachlorella beijerinckii-fed mice. Journal of Toxicological Sciences. 2011;36(1):121–126. https://www.ncbi.nlm.nih.gov/pubmed/21297350

J Toxicol Sci. 2010 ;35(1):101-5.

https://www.ncbi.nlm.nih.gov/pubmed/20118630

 

Nickel

Akhtar, N., Iqbal, J., Iqbal, M. 2004. Removal and recovery of nikel (II) from aqueous solution by loofa sponge-immobilised biomass of chlorella sorokiniana: characterisation studies. J Hazard Mater; 108(1-2): 85-94.  http://www.ncbi.nlm.nih.gov/pubmed/15081166

 

Arsenic

Zahran, E., Risha, E. 2014. Modulatory role od dietry Chlorella vulgaris powder against arsenic-induced immunotoxicity and oxidative stress in Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol; 41(2): 654-62.  http://www.ncbi.nlm.nih.gov/pubmed/25304544

 

Moulds

Hope, J., 2013. A review of the mechanism of injury and treatment approaches for illness resulting from exposure to water-damaged buildings, mold and mycotoxins. Scientific World Journal; 767482.

http://www.ncbi.nlm.nih.gov/pubmed/23710148

 

Radioactive elements

UVB

http://www.ncbi.nlm.nih.gov/pubmed/18474460

Gamma rays

http://www.ncbi.nlm.nih.gov/pubmed/8543329

 

http://www.ncbi.nlm.nih.gov/pubmed/8176669

http://www.ncbi.nlm.nih.gov/pubmed/2688154

Cobalt

Avio, C.M., Campagni, A. 1976. (Absorption of radiocobalt in Chlorella vulgaris)?1Assorbimentodi radicobalto in “Chlorella vulgaris”. G Batteriol Virol Immunol; 67(7-12):188-202.  http://www.ncbi.nlm.nih.gov/pubmed/1028642

Uranium

Horikoshi, T., Nakajima, A., Sakaguchi, T. 1979. Uptake of uranium by various cell fractions of Chlorella regularis. Radioisotopes; 28(8): 485-8.  http://www.ncbi.nlm.nih.gov/pubmed/542634